18 research outputs found

    An assessment of ten ocean reanalyses in the polar regions

    Get PDF
    Global and regional ocean and sea ice reanalysis products (ORAs) are increasingly used in polar research, but their quality remains to be systematically assessed. To address this, the Polar ORA Intercomparison Project (Polar ORA-IP) has been established following on from the ORA-IP project. Several aspects of ten selected ORAs in the Arctic and Antarctic were addressed by concentrating on comparing their mean states in terms of snow, sea ice, ocean transports and hydrography. Most polar diagnostics were carried out for the first time in such an extensive set of ORAs. For the multi-ORA mean state, we found that deviations from observations were typically smaller than individual ORA anomalies, often attributed to offsetting biases of individual ORAs. The ORA ensemble mean therefore appears to be a useful product and while knowing its main deficiencies and recognising its restrictions, it can be used to gain useful information on the physical state of the polar marine environment.Peer reviewe

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.Peer reviewe

    Low loss coatings for the VIRGO large mirrors

    Get PDF
    présentée par L. PinardThe goal of the VIRGO program is to build a giant Michelson type interferometer (3 kilometer long arms) to detect gravitational waves. Large optical components (350 mm in diameter), having extremely low loss at 1064 nm, are needed. Today, the Ion beam Sputtering is the only deposition technique able to produce optical components with such performances. Consequently, a large ion beam sputtering deposition system was built to coat large optics up to 700 mm in diameter. The performances of this coater are described in term of layer uniformity on large scale and optical losses (absorption and scattering characterization). The VIRGO interferometer needs six main mirrors. The first set was ready in June 2002 and its installation is in progress on the VIRGO site (Italy). The optical performances of this first set are discussed. The requirements at 1064 nm are all satisfied. Indeed, the absorption level is close to 1 ppm (part per million), the scattering is lower than 5 ppm and the R.M.S. wavefront of these optics is lower than 8 nm on 150 mm in diameter. Finally, some solutions are proposed to further improve these performances, especially the absorption level (lower than 0.1 ppm) and the mechanical quality factor Q of the mirrors (thermal noise reduction)

    The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH)

    Get PDF
    The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) had a Special Observing Period (SOP) that ran from November 16, 2018 to February 15, 2019, a period chosen to span the austral warm season months of greatest operational activity in the Antarctic. Some 2200 additional radiosondes were launched during the 3-month SOP, roughly doubling the routine program, and the network of drifting buoys in the Southern Ocean was enhanced. An evaluation of global model forecasts during the SOP and using its data has confirmed that extratropical Southern Hemisphere forecast skill lags behind that in the Northern Hemisphere with the contrast being greatest between the southern and northern polar regions. Reflecting the application of the SOP data, early results from observing system experiments show that the additional radiosondes

    Individual leaf development in Arabidopsis thaliana: a stable thermal-time-based programme

    No full text
    In crop species, the impact of temperature on plant development is classically modelled using thermal time. We examined whether this method could be used in a non-crop species, Arabidopsis thaliana, to analyse the response to temperature of leaf initiation rate and of the development of two leaves of the rosette. The results confirmed the large plant-to-plant variability in the studied isogenic line of the Columbia ecotype: 100-fold differences in leaf area among plants sown on the same date were commonly observed at a given date. These differences disappeared in mature leaves, suggesting that they were due to a variability in plant developmental stage. The whole population could therefore be represented by any group of synchronous plants labelled at the two-leaf stage and followed during their development. Leaf initiation rate, duration of leaf expansion and maximal relative leaf expansion rate varied considerably among experiments performed at different temperatures (from 6 to 26°C) but they were linearly related to temperature in the range 6-26°C, with a common x-intercept of 3°C. Expressing time in thermal time with a threshold temperature of 3°C unified the time courses of leaf initiation and of individual leaf development for plants grown at different temperatures and experimental conditions. The two leaves studied (leaf 2 and leaf 6) had a two-phase development, with an exponential phase followed by a phase with decreasing relative elongation rate. Both phases had constant durations for a given leaf position if expressed in thermal time. Changes in temperature caused changes in both the rate of development and in the expansion rate which mutually compensated such that they had no consequence on leaf area at a given thermal time. The resulting model of leaf development was applied to ten experiments carried out in a glasshouse or in a growth chamber, with plants grown in soil or hydroponically. Because it predicts accurately the stage of development and the relative expansion rate of any leaf of the rosette, this model facilitates precise planning of sampling procedures and the comparison of treatments in growth analyses

    Impact of model resolution on North Atlantic heat transport and Arctic sea ice

    No full text
    Arctic sea-ice area and volume have substantially decreased since the beginning of the satellite era. The enhanced oceanic heat transport (OHT) from the North Atlantic into the Arctic Ocean has contributed to the sea ice loss. Increasing the horizontal resolution of general circulation models (GCMs) improves their ability in representing the complex interplay of processes at high latitudes. The impact of model resolution on Arctic sea ice and Atlantic OHT is investigated by using five different state-of-the-art coupled GCMs (and 12 model configurations), which include dynamic representations of the ocean, atmosphere and sea ice. The models participate in the High Resolution Model Intercomparison Project (HighResMIP) of the Coupled Model Intercomparison Project Phase 6 (CMIP6). Model results covering the 1950–2014 period, are compared to a suite of observational datasets. In the models studied, a finer ocean resolution drives lower Arctic sea-ice area and volume, generally enhances Atlantic OHT, and largely improves the representation of ocean surface characteristics, such as sea-surface temperature (SST) and velocity fields. The model results highlight a clear anticorrelation at interannual time scales between Arctic sea ice (area and volume) and Atlantic OHT north of 60N. However, the strength of this relationship is not systematically impacted by model resolution. The higher the latitude used to compute OHT, the stronger the relationship between sea-ice area/volume and OHT. In Barents/Kara Sea and Greenland–Iceland–Norwegian Seas, the sea ice is more strongly connected to the Atlantic OHT compared to other Arctic regions

    Structure and Dopant Engineering in PEDOT Thin Films: Practical Tools for a Dramatic Conductivity Enhancement

    No full text
    International audiencePoly(3,4-ethylenedioxythiophene) (PEDOT) is certainly the most known and most used conductive polymer because it is commercially available and shows great potential for organic electronic, photovoltaic, and thermoelectric applications. Studies dedicated to PEDOT films have led to high conductivity enhancements. However, an exhaustive understanding of the mechanisms governing such enhancement is still lacking, hindered by the semicrystalline nature of the material itself. In this article, we report the development of highly conductive PEDOT films by controlling the crystallization of the PEDOT chains and by a subsequent dopant engineering approach using iron(III) trifluoromethanesulfonate as oxidant, N-methyl pyrrolidone as polymerization rate controller and sulfuric as dopant. XRD, HRTEM, Synchrotron GIWAXS analyses and conductivity measurements down to 3 K allowed us to unravel the organization, doping, and transport mechanism of these highly conductive PEDOT materials. N-methyl pyrrolidone promotes bigger crystallites and structure enhancement during polymerization, whereas sulfuric acid treatment allows the replacement of triflate anions by hydrogenosulfate and increases the charge carrier concentration. We finally propose a charge transport model that fully corroborates our experimental observations. These polymers exhibit conductivities up to 5400 S cm(-1) and thus show great promise for room temperature thermoelectric applications or ITO alternative for transparent electrodes

    Testing gravity with cold-atom clocks in space

    No full text
    Atomic Clock Ensemble in Space (ACES) is a mission designed to test Einstein’s theory of General Relativity from the International Space Station (ISS). A primary frequency standard based on laser cooled caesium atoms (PHARAO) and an active H-maser (SHM) generate a clock signal that is distributed to a network of clocks on the ground to perform space-to-ground comparison. With a fractional frequency stability of 1 × 10−16 after 10 days of integration time and an accuracy of 1 – 2 × 10−16, ACES will provide an absolute measurement of the gravitational redshift, it will search for time variations of fundamental constant, and perform Standard Model Extension (SME) tests. The ACES payload is currently completing its qualification tests before flying. The mission status, the latest test results, and the ACES performance for testing General Relativity are discussed

    PHARAO flight model : Integration and "on ground" performances tests

    No full text
    International audiencePHARAO (Projet d'Horloge Atomique par Refroidissement d'Atomes en Orbite), which is being developed by the French space agency CNES, is the first primary frequency standard specially designed for operation in space. PHARAO is the main instrument of the ESA mission ACES (Atomic Clock Ensemble in Space) [1]. ACES payload will be installed on-board the International Space Station to perform fundamental physics experiments. Last year [2], some results on two flight model (FM) sub-systems have been presented: Microwave Source performances and Cesium Tube operating as a cold atom clock by using the other engineering model sub-systems. All the FM sub-systems have now passed the qualification process and the whole FM of the cold cesium clock, PHARAO, has been assembled and will undergo extensive tests during the first semester of 2014. The results on the cold atoms manipulation and the metrological evaluation are presented
    corecore